

Global challenges

Over-reliance on fossil reserves

Resource insufficiency

Climate change

Urgent need to transform the existing materials paradigm

FinnCERES – competence center with ambitious impact target

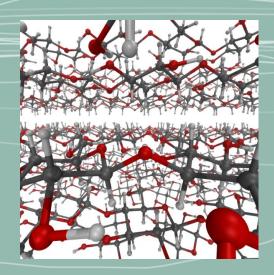
- Urgent need to transform the existing materials paradigm
- From lignocellulose science to materials bioeconomy
- Joint competence center for the materials bioeconomy between Aalto University and VTT

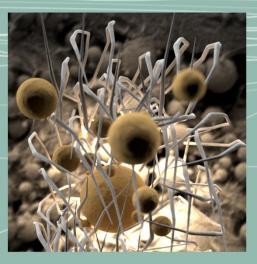
We will exploit the inherent natural properties of lignocellulose to create new materials

INTERACTIVE

MULTISCALE AND HIERARCHICAL

Super strong
Responsive
Chemical/thermal resistant
Modular and tunable
Biodegradable
Sustainable





Key research areas

Interactions and modelling

Biomass fractionation and modification

Structured materials

Advanced materials and products

FinnCERES Scientific Roadmap

The scientific questions

 How to use lignocellulose as a sustainable alternative to plastics, with similar properties?

- How to integrate lignocelluloses at different scales and contexts, in textiles and electronics?
 - · Can we achieve novel and feasible material families by exploiting cellulose-water interactions?
 - · How to hybridize materials to achieve the required performance in given applications?
 - Is it possible to use biomimetic and hierarchical construction toward ultrathin films, yarns, films, webs, porous structures?

Cellulose as future plastic

Wood-derived water & air purification systems

Lignocellulosebased materials in electronics

2020 2021 2022

enablers of applications

Preparation of building blocks

Lignocellulose reassembly

How to turn formally challenging biomaterial-water interactions into opportunities?

How to realize efficient and reproducible production of lignocellulose-based building blocks?

How to utilize biomaterial architectures to reach desired material properties?

Fundamental scientific discoveries

FinnCERES Ecosystem

- Collaboration platform one access gate to world-class knowledge and talents
- Company specific solutions and co-operation with FinnCERES experts
 - Early announcement of research progress for its members
 - Networking with FinnCERES community and other ecosystem members
 - Influencing FinnCERES Flagship
 - Talent creation and knowhow

Project

Project

Project

1

Project

Project

FinnCERES Flagship

Joint competence center for the materials bioeconomy between Aalto University and VTT

Funding by the Academy of Finland

Aim to develop new lignocellulose based materials and applications with a solid scientific foundation

FinnCERES Collaborators

More information?

Scientific aspects

Orlando Rojas
Professor
FinnCERES Research PI
Aalto University
orlando.rojas@aalto.fi

Tekla Tammelin Research Professor FinnCERES Research PI VTT tekla.tammelin@vtt.fi

Industry collaboration

Petri Silenius
Corporate Relations Manager
D.Sc. (Tech)
Aalto University
industry@finnceres.fi

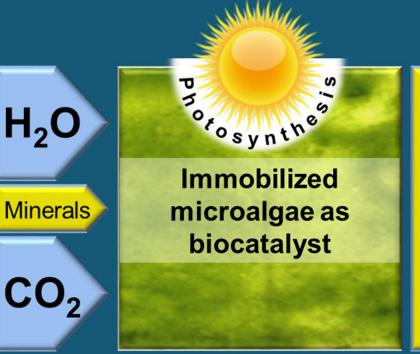
Alina Ruonala-Lindgren Co-creation Manager M.Sc. (Tech) VTT industry@finnceres.fi

Practical matters

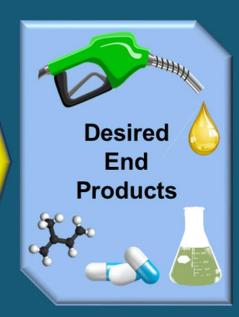
Jukka Hassinen
FinnCERES Flagship Manager
D.Sc. (Tech)
Aalto University
info@finnceres.fi

Stina Grönqvist FinnCERES Flagship Manager D.Sc. (Tech) VTT info@finnceres.fi

finnceres.fi

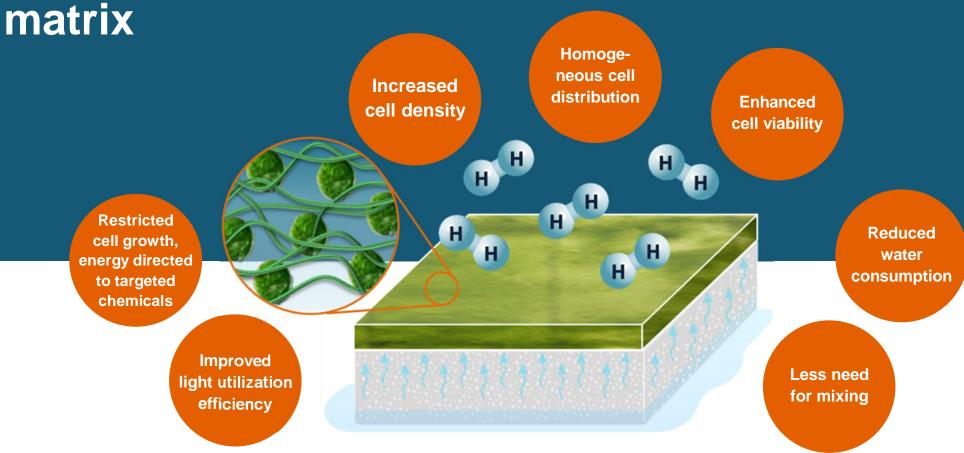

NANOCELLULOSE ARCHITECTURES AS CHEMICAL CONVERSION PLATFORMS

Chemicals production with immobilized microalgae

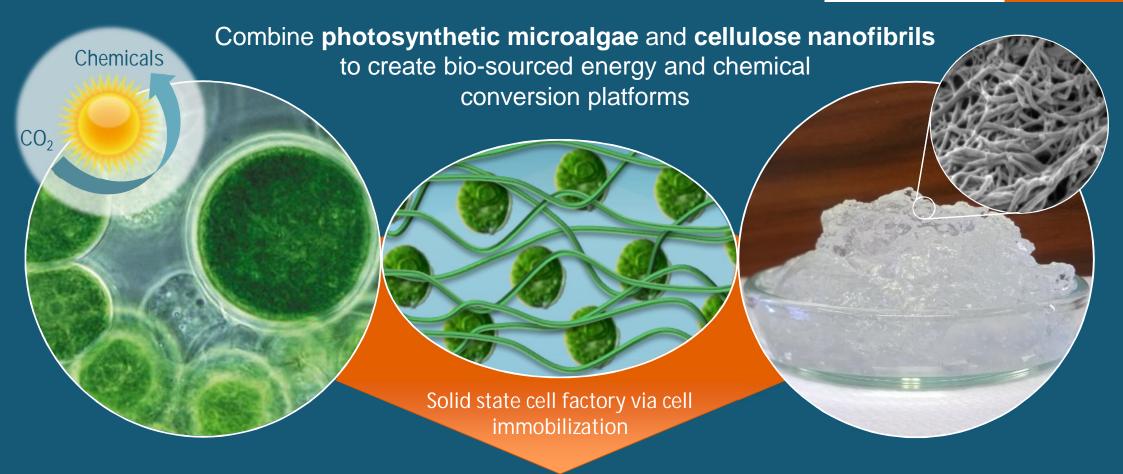


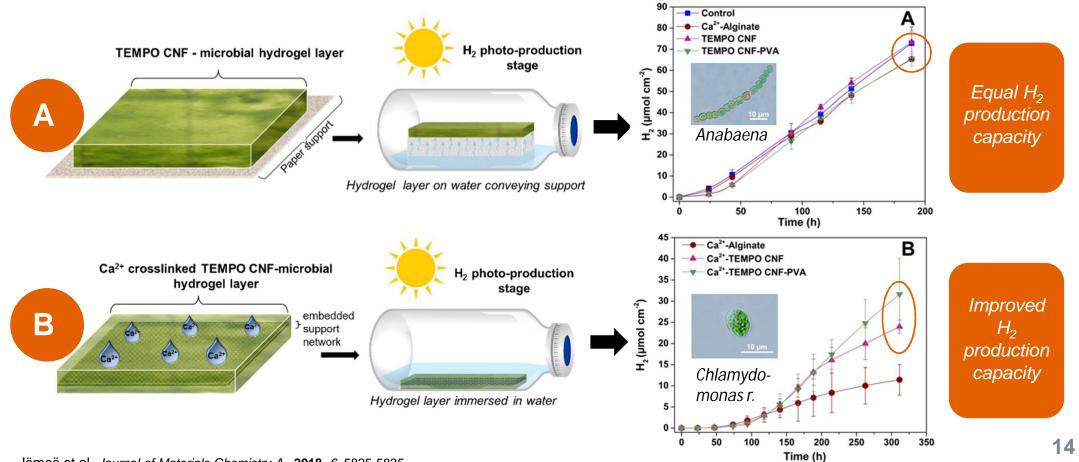
- Immobilization of microalgae on transparent nanocellulose matrix
 - Re-routes photosynthetic electron flow to biofuel production
 - Restricts excessive biomass growth
 - Increases light utilization efficiency
- Advantages of nanocellulose:
 - Biocompatibility
 - Transparency
 - Mechanical stability
 - Porosity for gas and vapour diffusion
 - Water holding ability

Microalgae as a catalyst for directed biosynthesis of solar biofuels (H₂) and high-value chemical compounds



No energy to biomass





H₂ production capacity of entrapped cells

Jämsä et al. Journal of Materials Chemistry A., 2018, 6, 5825-5835.

Acknowledgments

Nord novonordisk fonden

Thank You for listening

Materials Cluster

We are part of the FinnCERES Flagship that develops novel lignocellulose-based materials to address the main challenges of our century including resource sufficiency and climate change.

finnceres.fi

LAGSHIP PROGRAMME